Final Examination, 9 MAY 1997 SM311O (Spring 1997)

The following formulas may be useful to you:

a)
$$\iint_{S} \mathbf{v} \cdot d\mathbf{A} = \iint_{D} \operatorname{div} \mathbf{v} \, dx \, dy \, dz, \qquad b) \oint_{C} \mathbf{v} \cdot d\mathbf{r} = \iint_{S} \nabla \times \mathbf{v} \cdot d\mathbf{A},$$

$$c) \rho \left(\frac{\partial \mathbf{v}}{\partial t} + \nabla \mathbf{v} \cdot \mathbf{v} \right) = -\nabla p + \mu \Delta \mathbf{v} + \rho \mathbf{F}, \qquad \operatorname{div} \mathbf{v} = 0.$$

Part 1

1. Find the solution to the initial value problem

$$x' = x + y$$
, $y' = -x + y$, $x(0) = 0$, $y(0) = -2$.

2. Find the solution to the initial-boundary value problem

$$u_t = 4u_{xx}, \quad u(0,t) = u(\pi,t) = 0, \quad u(x,0) = 3\sin x.$$

- 3. (a) Let f be a function of two variables. Describe the geometric relationship between the gradient and the contours of f.
 - (b) Let $T(x, y) = x^2 + y^2 2x$ be the temperature profile of a two-dimensional body of water, with x and y the coordinates of a typical fluid particle. Draw the graph of the 1-isotherm, i.e., the set of all points that have temperature equal to 1.
 - (c) Let \mathbf{v} be a two-dimensional vector field. Define mathematically what it means for \mathbf{v} to have a potential and a stream function. State the necessary conditions (in terms of vector operations) for \mathbf{v} to have a potential and a stream function.
 - (d) Let **v** be a two-dimensional vector field with a potential ϕ and a stream function ψ . Show that the contours of ϕ and ψ must be orthogonal to each other.
- 4. Let $\mathbf{v} = \langle 4xy^3 y, -x + 6x^2y^2, 6z \rangle$.
 - (a) Does v have a potential ϕ ? If no, explain. If yes, find it.
 - (b) Compute $\int_C \mathbf{v} \cdot d\mathbf{r}$ where C is the straight line connecting (0,0,0) with (1,-1,2).
- 5. Let $\mathbf{v} = \langle x-2y, 3x-y \rangle$. Show that this vector field has a stream function and proceed to determine it. Apply this stream function to determine the equation for the path traversed by the particle located at position (1, -2) at time 0.

Please turn over

Part 2

- 6. (a) Write down a parametrization $\mathbf{r}(u, v)$ of S if
 - i. S is the plane that passes through the points (1, -1, 3), (1, 1, 2) and (0, 0, 0).
 - ii. S is a sphere of radius 3 centered at (2, -1, 2).
 - (b) Find a unit normal vector to the surface $z = 3x^2 + 4y^2$ at P = (1, 2).
- 7. Let $\mathbf{v}(x, y, z) = \langle 0, 0, 2z 1 \rangle$ be the velocity field of a fluid flow. Find the flux of this flow through the set of points on the surface $z = 1 x^2 y^2$ and located in the upper-half space z > 0.
- 8. Use double or triple integrals to compute the volume of the tetrahedron with vertices, (1, 0, 0), (0, 1, 0), (1, 1, 0) and (1, 1, 3).
- 9. (a) Let $\psi(x,y) = \cosh \pi x \cos \pi y 2 \sinh \pi x \sin \pi y$ be the stream function of a fluid flow. Find the velocity at (x,y) = (1,1).
 - (b) Let $\mathbf{v} = \langle \frac{y}{\sqrt{x^2 + y^2}}, -\frac{x}{\sqrt{x^2 + y^2}} \rangle$. Find the vorticity of \mathbf{v} at (x, y) = (1, 1).
- 10. Let $\mathbf{v}(x, y, z) = \langle 3x^2, -y^2, 0 \rangle$ be the velocity field of a fluid whose density and viscosity are equal to unity. The position of a fluid particle is denoted by (x, y, z).
 - (a) Find the acceleration of the particle that occupies (1, -1, 1).
 - (b) Verify whether there is a pressure function p such that the pair (\mathbf{v}, p) satisfies the Navier-Stokes equations with the body force $\mathbf{F} = \mathbf{0}$. If these equations are satisfied, what is the associated pressure p?